
Theor Chim Acta (1995) 92:241-252 Theoretica 
Chimica Acta 
© Springer-Verlag 1995 

Totally dressed SDCI calculations: 
An application to HF and F 2 

J. Sfinchez-Marin 1, I. Nebot-Gil 1, D. Maynau 2, J.P. Malrieu 2 
1 Departament de Quimica Fisica. Facultat de Quimica. Universitat de Valencia. Dr. Moliner, 
50. E-46100 Burjassot, Val6ncia, Spain 
z Laboratoire de Physique Quantique. Universit6 Paul Sabatier, 118, route de Narbonne, 
F-31062 Toulouse Cedex, France 

Received December 5, 1994/Final revision received February 16, 1995/Accepted February 17, 1995 

Summary. A previously proposed procedure including the linked and unlinked 
contributions due to Triple and Quadruple excitations into a size-consistent 
SDCI-like model has been applied to HF and F2 single-bond systems. The 
procedure is a non-iterative approximation to the more general total dressing 
model, which is based on the intermediate Hamiltonians theory. Three basis sets 
have been employed: the correlation consistent cc-pVTZ basis, a similar one 
including 3dlfpolarization functions, and another including one set of g polariza- 
tion functions. Excellent agreement with experiment and high-quality calculations 
is obtained for both equilibrium distances and spectroscopic constants. The possi- 
bilities of the method in treating single-bond breaking are also demonstrated. 
Finally, the Linked and Non-Linked contributions from Triple and Quadruple 
excitations are analysed separately and it is suggested that the addition of the 
linked triples to the size-consistent SDCI is sufficient to have quantitatively correct 
spectroscopic properties in going from the size-consistent SDCI to nearly experi- 
mental values. 

Key words: Intermediate Hamiltonians - Total dressing - Size-consistent config- 
uration interactions - Linked and unlinked diagrams - Spectroscopic constants 

Introduction 

A procedure has been recently proposed [-1] to achieve the elimination of the 
so-called unliked diagrams effects I-2] in any multi- or single reference SDCI, 
rendering it size-extensible (and even separable, provided that localized MO's be 
used) [1, 3]. The method derives from the intermediate Hamiltonian formalism [-4] 
and goes through an appropriate dressing of the SDCI matrix. This dressing 
consists in adding to the SDCI matrix elements some terms which will cancel, after 
diagonalization, the undesired unlinked effects. The dressing terms themselves 
depend on the SDCI function coefficients so that an iterative procedure converging 
into a self-consistent solution must be built. The method has been called Self- 
Consistent Size-Consistent SDCI and labelled as (SC) 2SDCI [1]. 
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(SC)2SDCI provides a great improvement both in energy and formal properties 
in the (projected to the SD space) wave function at the moderate cost of a few 
SDCI-like matrix diagonalizations. Results comparable to CCSD can be obtained 
at a very moderate cost [1]. 

(SC)2SDCI method suppresses all the unlinked contributions of Triple and 
Quadruple excitations and takes into account to all orders the most relevant 
Exclusion Principle Violating diagrams [5], so that it can be considered as an exact 
CEPA approach [1, 6, 7]. 

A total dressing self-consistent procedure which would treat linked and un- 
linked Triples and Quadruples contributions in a similar way as (SC)zSDCI does 
with unlinked ones is under development [8]. However, it is a new iterative 
procedure, more expensive than (SC)2SDCI, and in view of the good quality of the 
(SC)2SDCI wave functions, one may wonder whether starting from this wave 
function, one could not calculate the linked effects of Triples and Quadruples in 
a non-iterative way. 

In a previous paper [9], an approximated non-iterative procedure has been 
proposed which estimates the linked contributions of Triples and Quadruples, by 
means of a suitable dressing operator A'. The mean value of the (SC)2SDCI 
function (hereafter noted as ~r0 is then obtained as 

AE~o = <91a'l 9>. 
The A' operator, itself, depends on the c, coefficients of Triple and Quadruple 

excitations in the exact function 7 t (intermediate normalization is assumed) 
S,D T,Q 

= + E + E + ' ,  (1) 
i 

where the index i runs over the space of Singles and Doubles while index ~ runs 
over the Triples and the Quadruples. Of course, the c~ coefficients are not known 
a priori and they must be estimated from the set of 6, coefficients of the ~ function: 

S,D 

= ~bo + E e, qS,. (2) 
i 

A number of versions of this mean-value total dressing method (MVTD) can be 
conceived depending on the way of estimating c=. Following the notation of Ref. 
I-9], we will denote henceforth the most elaborated version of MVTD method as 
(mv)td-2. A closely related (mv)td-2' version will also be mentioned (See further 
details below). 

Previous test calculations with these total dressing models [9] and, in partic- 
ular, on the single-bond dissociation curves of HF and F2 have been performed 
employing DZP basis sets for which very accurate solutions are available [10-12]. 
Some conclusions from these previous calculations were: 

a) In the well region, the td-2 results compare very well with results from CC 
methods which include Triples (CCSD +T(CCSD), CCSD{T) or even better). An 
improvement of one order of mangitude in the energy error is obtained when one 
goes from the (SC)ZSDCI to the td-2 model. Errors less than 1 mhartree for HF 
with respect to full-CI and for Fz with respect to CCSDT-1 were obtained in this 
region as well as reliable equilibrium distances and other spectroscopic properties. 

b) Despite the single referential nature of the model space and some perturbative 
steps involved in the method (see below and Ref. [9] for details), it does not diverge 
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at long bond distances where quasi-degenerate a z --> a *z diexcitations occur. 
A little hump appears at intermediate bond distances but the estimates of dissocia- 
tion energy De obtained from differences between long-range distance energies 
and the minimum are good (5.8 vs 6.128 eV (experiment) [13] for HF, 1.2 vs 1.66 
(experiment) [13] for F2). Taking apart this artifact, (mv)td-2 energies follow very 
close (less than 1 mhartree) the CCSDT values for HF and CCSDT-1 or MR- 
LCCM values for F2 at medium range and even long-range distances. 

Dressing matrix methods are not variational in the sense of satisfying the 
Variational Principle, but they share this defect with their MBPT and CC competi- 
tors. They are not (in general) invariant under rotation of the MO's, but this is not 
a defect, in our mind, since the MO-dependence of the energy provides a supple- 
mentary information. One advantage is that they can be formulated as Hermitian 
eigenvalue equations [8] and rest on the very efficient algorithms available for the 
diagonalization of symmetrical real matrices. Besides this, they do not diverge 
neither in quasi-degenerate multireference situations [8] nor for dissociating single 
bonds where CC methods could not converge. We present here results on HF and 
F2 with extended basis sets taking now as a reference the experimental values. Both 
the (SC)zSDCI and, mainly, the (my) td-2 procedures are tested in this sense. Some 
insight on the origin of the small hump occurring at long distances as well as its 
behavior with the basis set changes is obtained. Finally the relative role of linked 
and non linked Triples and Quadruples is discussed. 

Method of calculation 

1) Three basis sets have been used in the Hartree-Fock step. The first one is the 
correlation consistent cc-pVTZ basis set of Dunning [14], which contraction is 
(10s5p)/(4s 3p) + (2dlf) for F atoms, and (5s)/(3s) + (2pld) for H. The (5s)/(3p) 
contraction was that from van Duijneveldt [15]. The second basis set is similar, but 
(3dlf) polarization functions have been used for F, while the valence contraction 
was the widely used (9s5p)/(4s3p) Huzinaga-Dunning contraction [16, 17]. This 
choice allows to eliminate of the correlation space the highest virtual MO's which 
remain quasi-purely s in nature. The third basis set has a contraction (10s6p)/(5s4p) 
+ (3d2flg) for the F atoms which is basically the standard cc-pVQZ basis set of 

Dunning [14] but for the s AO's. For the H atom the standard (6s) / (4s )  
+ (3p2dlf) cc-pVQZ basis set has been used [14]. The highest virtual MO's were 

switched offin the 3dlfcalculations only, but the two core electrons of each F were 
frozen in all correlation calculations. 

The details, origin and implementation of both (SC) zSDCI and td-2 methods 
have been discussed in Refs. [1, 9]. Hence, only an outline of the main details 
follows here. 

2) (SC)2SDCI step: An intermediate Hamiltonian 

= P(H + V)P  (3) 

is built, where P is the projector operator onto the space spanned by the closed 
shell single reference ~bo and all its Single- and Double-excitation determinants: 

S,D 

P = IqSo)(~bol + ~ IqSi)(~,l (4) 
i 
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and 17 is the dressing operator on the same space. 17 is purely diagonal and, hence, 
Hermitian (other options can be considered [3]) and defined as 

<~,1171~b,>= ~ ~j<~olHl~j>, (5) 
J DI~,¢o 

where Dj + is the double excitation X ~  operator that creates a Double configuration 
q6j from ~b o and ~j is the coefficient of ~bj in Eq. (2). The expected value of operator H 
is then obtained as 

/~ = < ~ l / t l  ~> = <~LH + 171 ~> (6) 

by diagonalization of / t .  As Eq. (5) shows, the operator 17 depends on the ~j coeffi- 
cients, so that an iterative procedure is undertaken which converges to the self- 
consistent solution. In the following steps, such self-consistent solutions are as- 
sumed to have been reached. It can be shown [1] that 17 incorporates the unlinked 
effects of Triples (on Singles) and Quadruples (on Doubles) which are required to 
cancel the undesired unlinked terms brought by the truncation of the CI space. 
Moreover, the converged tp and/~ incorporate to all orders the most relevant EPV 
diagrams. 

3) Total dressing step. Besides the unlinked contributions, the linked ones due to 
Triples and Quadruples can be incorporated to the dressing by means of a new 
(also diagonal) dressing operator defined as 1-93 

1T, Q 
<~b~ 1 17'1 ~,> = ~. ~ <~, I H I~b~> c'~, (7) 

w h e r e ,  runs over the whole outer space made of Triple- and Quadri-excitations, 
~b~ is any Triple or Quadruple interacting with ~b~ and the c~ coefficients are taken in 
intermediate normalization. 

The origin of Eq. (7) can be easily understood if one considers the Schroedinger 
equation H ~  = Eo'/'. After cancelling on the left by ~b~, one can write: 

cjHij - Eoci + ~ c~Hi~ = 0, (8) 
jES ~¢~S 

where S stands for the model space (in the present work, the space of Singles and 
Doubles). On the other hand, if one considers the dressed Hamiltonian eigenvalues 
equation 

(H + I7')} W> = Eo 1 7/> (9) 

and remembering that 17' is defined as a diagonal operator, the equivalent of 
Eq. (8) is, 

~ t  ~., cjHi; - Eocl + ci<~i] V [~bi> = 0. (10) 
j~S 

Equation (7) derives from the equality of the last terms on the left-hand side of 
Eqs. (8) and (10). 

The iterative (built H + I7' then diagonalize)-procedure would be very costly. 
The following alternative at~proach is then used: We calculate the mean value 
of the total dressing H + V' operator relative to the (SC)2SDCI function ~. 
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If we call ~ = ~ x Co the normalized vector ~, the (mv) td-n contribution is 
given by 

E(mv)td_ n ~___ (..~l a .Jr 17tl }p> ' (11) 

where E(mv)ta-n includes all the effects carried by the (SC)2SDCI function and the 
linked effects brought by 17'. The practical definition of 17' requires to have an 
estimate of the c~ coefficients. In the model which we call td-2 the c~ coefficients 
(see Eqs. (1) and (7)) are approached as follows: 

i) For the Triples: In a second-order perturbation theory-like way 

(~b=lnl ~P) 
C~ 

where A~ is the Epstein-Nesbet 
A= = (4~olH[qSo) -- (~b=lHlqS=). 

ii) For the Quadruples, we take 

C= = E 
(i, J) 

A= ' (12) 

denominator for the Triple ~b=, i.e., 

e,e, (A, + A4, (131 
\ & )  

where (i,j) stands for every couple of disconnected Doubles ~bl and ~j into which 
the Quadruple q~, can be decomposed, and Ai, Aj, and A, are Epstein-Nesbet 
denominators. 

A simpler version of td-2 which we call td-2' is obtained by simply assuming 
additivity of the denominators (which would be exact in an Moller-Plesset parti- 
tion of H) so that 

c~ = ~ ci c'j. (14) 
(i, j) 

For single-bond potential curves, the results from td-2' are expected to be very 
similar to those of td-2 [9] but a noticeable time-saving is obtained. 

Indeed, Eq. (11) can be rewritten as 

E(mv)td_ x ----- <___~IH + 171___~> + <___~117'[___~> -- (___~IV] t/t> 

=/~  + ( ~ 1 7 ' 1 ~ >  - (~117 I~>. (15) 

In this way, the second term on the right-hand adds the effect of linked diagrams 
due to triple and quadruple excitation determinants while the third term avoids the 
reintroduction of the unlinked effects which were in/~ yet. 

Our algorithm computes separately the effects due to Triples and Quadruples 
[9] as well as the linked and unlinked contributions, so that we can write 

E(mv)td-x = ff~ + AEL° + AE x L - -  AEQL -- AETL (16) 

and each term contribution can be analysed separately. 
From the technical point of view, we have taken benefit in the present work of 

an algorithm recently developed by one of us (D.M.) which allows for a very 
efficient systematic scanning of all the Triple and Quadruple excitations interacting 
with the space of Single and Double excitations built on a ~b o closed-shell single 
reference [18]. In this work the computation time increases in N s (N being the size 
of the basis set) due to the scanning of the Quadruples. However, as discussed in 
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Ref. [18], the intermediate information storage which reduces the computational 
time of CCSD to N 6 would be feasible in the treatment of the linked effects of the 
Quadruples; this would lead to an irreducible N 7 behaviour, as for CCSD(T). 
Instead, we have chosen to keep the N 8 dependence due to several reasons: 1) Our 
factor in the N 8 power is very low. 2) The dependence of the Triples is in fact NocNv3 4 
(Noc and Nv being the number of occupied and virtual MO's respectively), quite 
close to the 4 4 NocNv dependence of the Quadruples so that N 6 (one would better 
write 2 4 NocNv) dependence for the Quadruples does not ameliorates so much the 
global dependence, and 3). This choice allows for a much larger freedom in the 
choice of denominators in perturbative or perturbative-like formulations [8, 18]. 
Moreover, our N 8 algorithm is highly parallelizable because each individual 
contribution from either a Triple or a Quadruple can be computed independently 
of the others after a proper addressing arrangement. 

Results and discussion 

The HF molecule deserves very often attention from theoreticians due to the 
great interest involved in the hydrogen bonded (HF)/ system [19-23]. Very 
accurate correlation calculations exists on the HF ground state potential well 
[9, 10, 21, 22, 24], but calculations involving f atomic orbitals are scarce 1-23, 25]. 
This is in part motivated by the need of comparing with extensive calculations on 
the dimer. Instead, high-quality calculations on a limited number of geometries 
(re = 1.733 a.u., 1.5re, and 2re) in a DZ + P basis set can be found [10, 11, 26, 27]. 
Benchmark calculations with systematically improved Dunning's correlation con- 
sistent basis sets have also been published and provide excellent reference results 
for spectroscopic properties and dissociation energies [28]. 

In order to compare properly with our previous results [9] on the DZ + P basis 
sets for which some full CI results are available, we have calculated the energies at 
the same set of 12 points, taken as selected multiples of re = 1.733 a.u. and ranging 
from 0.65re to 5r~. Besides this, we have stretched the single bond up to 30re (about 
52 Bohr) in the largest basis set case. Our method of calculation converged easily at 
very large bond lengths provided that the (very poor) RHF function could be 
obtained. 

All spectroscopic properties have been calculated with the same procedure used 
in previous work [29]. Our results are shown in Table 1. A very recent paper [30] 
reports experimental measurement of the rotational constants for the three lowest 
vibrational states of HF. The Hutson's method [29] that we use to estimate 
the spectroscopic properties works specially well to get an efficient estimate of 
the centrifugal distortion constants. We show in Table 2 the theoretical values for 
the + 3d2f19 basis set (mv)td-2 calculations. In spite of the absolute error in the 
energies of the vibrational levels which are responsible for the deviation in the 
estimates of toe and o)exe, the agreement in order of magnitude, sign and first figures 
of the rotational constants is noticeable, specially up to third order (Hv). However, 
the high precision of the experimental measurements remains as a permanent 
challenge for ab initio calculations. 

The increase of basis set quality in going from DZ + P to extended sets is well 
reflected in the improvement of the calculated values corresponding to the (mean 
value) total dressing technique. This does not hold for the intermediate (SC)2SDCI 
step which shows an irregular behavior in equilibrium bond lengths and only 
a moderate improvement in o)e. Using canonical MO's, as we do, (SC)2SDCI 



Totally dressed SDSI calculations: An application to HF and F2 247 

Table 1. Spectroscopic properties for HF. Equilibrium distances are in ,~, dissociation energies in eV 
and other properties in cm- 

Calculation R e Bo ~o co~ COeXo De 

Basis set DZ + pa 
(SC)ZSDCP 0.917 20.9749 0.757 4234.8 90.6 6.28 b 
(mv) td-2 'a 0.919 20.8963 0.767 4216.8 92.0 5.75 b 

Basis set 4s3p3dlf/3s2pld 
(SC)ZSDCI 0.912 21.0564 0.716 4218.9 82.0 6.79 b 
(mv)td-2 0.915 20.9544 0.724 4183.2 84.0 6.07 b 
(mv)td-2' 0.916 20.9414 0.730 4178.9 84.1 6.038 

Basis set cc-pVTZ 
(SC)2SDCI 0.914 21.0018 0.712 4210.5 81.9 6.74 b 
(mv)td-2 0.917 20.9015 0.725 4172.5 83.6 6.03 b 
(mv)td-2' 0.917 20.8886 0.726 4169.1 83.8 5.98 b 

Basis set 5s4p3d2flg/4s3p2dl[" 
(SC)2SDCI 0.912 21.0526 0.711 4196.9 80.5 6.94 ° 
(mv)td-2 0.915 20.9383 0.724 4156.3 82.4 6.12 c 
(mv)td-2' 0.916 20.9203 0.725 4150.7 82.5 6.07 c 
(mv)td-2 (Linked Triples only) 0.915 20.9667 0.726 4164.4 82.6 6.01 ° 

Other works d 
FCI ° 0.9203 4143.1 91.3 5.49 
MRD-CI f 0.9127 21.45 0.8494 4181.0 88.78 6.09 
SCEP/CEPA g 0.919 20.8 0.780 4131 89 
MCSCF g 0.917 20.9 0.762 4181 86 
SDCI/CASSCF h 0.9152 21.029 0.7912 4167.2 88.6 6.01 
Experiment i 

0.9168 20.9557 0.798 4138.32 89.88 6.128 

a Ref. [9]. Results for td-2 method are slightly worse but for Bo and D~ 
u Estimate of De from the difference of energies at 5r, and ro with ro = 1.733 a.u. 
c Estimate of De from the difference of energies at 30ro and re 
d Other results from literature are: Ro = 0.9194 A, Be = 20.84 cm- 1, co~ = 4135 cm- 1 (method: CPF, 
basis set: 8s6p2d/4slp), Ref. [22]; Re = 0.9218 ~., c% = 4167.4cm -1, COeXo = 85.1 cm - I  (method: 
(A)CCD, basis set, 6s4pld/4slp), Ref. [21];Ro=0.9198A, ~oo=4202.4cm -1, cOoXe=82.2cm -1 
(method: SCEP, same basis set), Ref, [21]; Re = 0.917 A (method: CCSD(T), basis set: 4s3p2dlf/3s2pld), 
Ref. [23]; Ro = 0.9198 A, ~Oe = 4202.4 cm -1. Dc = 6.07 eV (method: MP4 + counter Poise, basis set: 
7s5p2dlf/5s2pld + (3s3p2d) at midpoint), Ref. [41] 
° Ref. [28]. Basis set cc-pVDZ 
f Ref. [24]. Basis set 6s4p3d/5s2pld + (3s, 2p) at midpoint 
g Ref. [25]. Basis set 12s8p3dlf/7s2pld 
h Ref. [28]. Basis set aug-cc-pV5Z 
i Ref. [13] 

d i s s o c i a t e s  v e r y  h i g h  in  e n e r g y  w h e n  t h e  bas i s  se t  is i m p r o v e d ;  ( m e a n  va lue )  t d - 2  
a n d  t d - 2 '  c o r r e c t  in  t h e  g o o d  sense  t h e s e  t e n d e n c i e s ,  a n d  p r e d i c t  Ro w i t h  a n  e r r o r  
lesser  t h a n  0 .002 A w i t h  t h e  t h r e e  e x t e n d e d  bas i s  sets,  r e d u c i n g  t he  e r r o r  in  toe to  
less t h a n  18 c m  - 1  (0 .44%) .  O u r  l a r g e s t  ba s i s  se t  r e su l t s  c o m p a r e  wel l  w i t h  t h e  
i n t e r n a l l y  c o n t r a c t e d  m u l t i r e f e r e n c e  C I  ( C A S S C F  + 1 + 2) s p e c t r o s c o p i c  p r o p e r -  
t ies  of  P e t e r s o n  et  al. [-28] in  sp i t e  of  t h e  v e r y  d i f f e ren t  ways  of  i n c l u d i n g  d y n a m i c a l  
a n d  n o n - d y n a m i c a l  c o r r e l a t i o n  effects. T h e  a p p r o a c h  to  t h e  d i s s o c i a t i o n  l im i t  a l so  
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Table 2. Centrifugal distortion constants for the first three vibrational levels of HF in cm- 1 

v=0  v = l  v = 2  

Constant Calc. a Exp. b Calc." Exp. b Calc." Exp. b 

G (v) - -  - -  3994 3961.42 7816 7750.8 
B, 20.62 20.5597 19.85 19.7874 19.10 19.0349 
D, x 10 3 2.11 2.1199 2.05 2.0637 1.99 2.0100 
H v x 10 7 1.61 1.6350 1.56 1.5845 1.51 1.5301 
L~ x 101 t -- 1.48 -- 1.4978 - 1.64 -- 1.432 -- 0.88 - 1.351 
M, x 10 a5 1.54 1.049 1.81 0.68 3.33 - -  

a From (mv)td-2 curve and the +3d2flg/+3p2dlfbasis set 
b From Ref. [30] 

takes place at energies which compare well with the experiment, so that the 
inclusion of linked effects of Triples and Quadruples strongly correct the defi- 
ciencies of (SC)2SDCI and provide reliable estimates of De. As stated in the 
DZ + P calculations, td-2' provides results which lie very near to those of the td-2 
method, and rest as a good choice for extensive calculations because it is cheaper in 
time. The De estimates from the largest basis set and very long distances are very 
reliable for HF, and clearly show that our total dressing procedures do not diverge 
at single bond dissociation distances. 

The ground state of the F2 molecule is an excellent test problem for theoretical 
calculations on a highly correlated single bond, and, consequently, has merited 
a great number  of high quality calculations, all of them including f functions 
in the basis set 1-31-35], and even 9 (l = 4) AO's [32,36-38].  Benchmark 
calculations by Peterson et al. are also available for Fz [39]. We have performed 
calculations of the potential curves on a set of 16 points ranging from 2.0 to 
10.0 a.u., and the spectroscopic constants have been calculated in the same condi- 
tions that  they were in the DZ + P basis set [9]. Our  results, along with a number  
of reference values taken from the literature, are shown in Table 3. The (mv)td-2' 
values for both + df basis sets are not reported but they show little differences with 
the (mv)td-2 results. I t  must  be noticed that spectroscopic constants, and parti- 
cularly the vibrational ones, calculated from (mv)td-2 and (mv)td-2' (cc-pVTZ 
basis set calculations) are in very good agreement with experiment. As was shown 
by Ahlrichs and coworkers [32], the angular incompleteness of the basis set can be 
responsible for errors larger than 0.01 a.u. in Re even for highly correlated methods 
(e.g., MR-CI(SD)). Our  smallest errors with + df basis sets (0.003 A) seem to 
overpass the possibilities of the basis set and could be the result of fortunate error 
cancellations. 

As reported in Table 3, the errors in rOe are less than 2 c m -  1 (0.22%) and this 
would confirm the reliability of the (mean value) total dressing approaches to treat 
the well region of the potential and its capability to correct the bad trends in the 
(SC)ZSDCI energies at stretched bond lengths. The dissociation energies estimated 
from differences in (mv)td energies at long and equilibrium distances are also very 
reliable when compared with spectroscopic measurements. Moreover, the method 
converged fairly well for homoatomic  F2 at a bond distance of 100 a.u. and the 
De estimate for the + dfg basis set agrees remarkably with the CCSD(T) estimates 
using cc-pVQZ basis set [33]. 
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Table 3. Spectroscopic properties for F 2. Equilibrium distances are in A, Dissociation energies in eV 
and other properties in cm-1  

Calculation R~ Bo ~o coo o)~xe Do 

Basis set DZ  + pa 
(SC)2SDCI" 1.437 0.8653 0.0197 829.7 17.1 2.33 b 
(mv)td-2 'a 1.433 0.8669 0.0169 849.0 14.7 1.15 b 

Basis set 4s3p3dlf 
(SC)2SDCI 1.393 0.9147 0.0112 982.1 7.1 2.90 b 
(mv)td-2 1.417 0.8858 0.0141 909.0 11.7 1.52 b 

Basis set cc-pVTZ 
(SC)2SDCI 1.392 0.9167 0.0112 996.5 7.6 2.87 b 
(mv)td-2 1.415 0.8890 0.0142 918.5 11.6 1.50 b 

Basis set 5s4p3d2flg 
(SC)2SDCI 1.389 0.9206 0.0109 1004.2 7.7 3.05 ~ 
(mv)td-2 1.413 0.8904 0.0135 915.2 10.4 1.59 ~ 
(mv)td-2' 1.413 0.8912 0.0134 916.0 10.1 1.59 c 
(mv)td-2 (Linked Triples only) 1.409 0.8961 0.0137 913.4 9.6 1.47 ° 

Other works d 
MCSCF" 1.4115 1.638 
MP4 f 1.422 906 1.641 
MR-SDCI  + Qg 1.417 930 1.658 
C M R C I  h 1.4130 0.889 0.0109 934.4 16.57 1.65 
A C P F  h 1.4158 0.885 0.0113 924.4 17.30 1.55 
Q D - V P T  h 1.4161 0.885 0.0112 927.4 17.16 1.57 
CEPA(0) h 1.4211 0.879 0.0116 911.5 17.70 
CCSD(T) i 1.4130 921 1.589 
QCISD(T) j 1.4266 903 1.51 
SDQ k 1.404 957 1.98 
SDCI/CASSCF ~ 1.4128 0.889 0.0135 899.9 12.4 1.59 
Experiment m 

1.4119 0.8902 0.0141 917 11.2 1.659 

Ref. [9]. Results for td-2 method  are similar or slightly worse but  for Bo = 0.8674 c m -  1 
b Estimate of Do from the difference of energies at R = 10 a.u and R = 2.70 a.u. 
c Estimate of Do from the difference of energies at R = 100 a.u. and R = 2.70 a.u. 
d Other  selected results from the literature are: Ro = 1.4323 A, o9¢ = 911 cm-1,  Do = 1.61 eV (method: 
CCD(ST), basis set: 5s3p2dlf), Ref. [34]; Re = 1.4158/k, coo = 920 cm -1, De = 1.507eV (method: 
CCSD(T), basis set: cc-pVTZ), Ref, [33]; R e =  1.414A, Do=  1.310eV (method: CPF,  basis set: 
6s4p2dlf), Ref. 1-32]; Re = 1.412A, coo = 948 cm -1, Do = 1.673 eV (method: CASSCF, basis set: 
5s4p3d2flg, ANO's),  Ref. [37] 
° Ref. [32]. Basis set: 7s5p3d3flg 
f Ref. 1-41]. Basis set: 7s5p2dlf + (3s3p2d) at midpoint. Counter  Poise correction 
g Ref. [37]. Basis set: 5s4p3d2f19, ANO's  
h Ref. [38]. Basis set: 13s8p3d2fl 9 
i Ref. 1-33]. Basis set: cc-pVQZ. 
J Ref. [34]. Basis set: 5s3p2dlf 
k Ref. [35]. Basis set: 6s4p3d2f(STO's) 

Ref. [39]. Basis set: cc-pV5Z. 
m Ref. [13]. 
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Linked and non-linked contributions from Triples and Quadruples 

As was indicated above (see Eq. (16)), we proceed to a separate evaluation of the 
contributions to the correlation energy by means of independent summations over 
the linked and unlinked diagrams which relate every Triple and Quadruple 
excitation which the model space of Singles and Doubles. Of course, all fourth- 
order diagrams implying Triples and Quadruples have been taken into account, 
but some diagrams, including the most relevant EPV ones, have been also summed 
to infinite order and enter in the evaluation of the (mv)td energies because they are 
included in the self-consistent i s coefficients. 

We have plotted in Figs. 1, 2 the values of the four contributions (Linked 
Triples, Linked Quadruples and the respective Non-Linked terms) at each point of 
the potential curves of the homoatomic bond F2 and the heteroatomic bond HF. It 
must be remembered that the Non-Linked contributions have the important role of 
insuring size-consistency. As Figs. 1,2 show, the role of the NL Quadruples term is 
very important in both molecules at equilibrium distances and its importance 
increases severely as the bond is stretched. In contrast, the role of NL Triples 
contribution shows a marked difference in HF and F2. While it contributes less 
than a mHartree at bond distances in F2 and remains two orders of magnitude 
lesser than the NL Quadruples for long distances, its role in HF is very relevant at 
long distances. This behaviour evidences the increasing weight of Single excitations 
in the correlated wave function in the heteroatomic case. 
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Fig. 1. Linked and Non-Linked 
contributions from Triples and 
Quadruples to the mv(td)-2' 
correlation energy in hartrees 
calculated with the largest basis 
set from Triples and Quadruples 
along the dissociations curve of 
HF. Units of bond length are 
re = 1.733ao 
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Fig. 2. Linked and Non-Linked 
contributions from Triples and 
Quadruples to the mv(td)-2' 
correlation energy in hartrees 
calculated with the largest basis 
set from Triples and Quadruples 
along the dissociations curve of 
F2. Units of bond length are ao 
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In contrast to Non-Linked contributions, the linked ones do not attempt to 
correct the undesirable effects due to normalization in the Singles and Doubles 
model space. Instead, these are additional energy terms which bring actual physical 
contributions. A reliable calculation of these contributions all along the dissocia- 
tion curve is needed to have good De values. 

Despite the great difference in the number of Quadruple and Triple excitations 
(e.g., for F2 in the + dfg basis set the number of Q amounts to about 2.5 x 109 
while the number of T is about 2 x 107), their Linked contributions are very 
different, as evidenced in Figs. 1, 2. The weight of the LT terms is significantly 
greater in short bond distances and becomes increasingly important at long 
distances. Instead, the role of LQ remains relatively little at all distances, and never 
goes up of a few mHartree in both HF and F2. 

Hence, taking into account the cost in evaluating the LQ contributions, 
we have tried the evaluation of the spectroscopic properties from the potential curves 
obtained adding only LT contributions to the (SC)2SDCI energy/~. The results for 
the largest basis set are shown in Tables 1 and 3 for HF and F2 respectively and show 
that the main improvements of all properties relative to the (SC)2SDCI ones are 
obtained from Triples only. These results are consistent with the previously noticed 
parallelism of CCSD and (sc)ZSDCI results; they suggest that the (SC)2SDCI plus 
addition of the linked Triples might be an interesting alternative to CCSD(T) since it 
is somewhat cheaper and better converging. This would provide a convenient 
algorithm with an N 7 increase of the computation time. 

The present calculations show, in any case, that the results of the (mean value) 
total dressing technique improve in a consistent way with the angular enhancement 
of the basis set. The spurious behaviour at intermediate bond distances does not 
disappear, however, with the sole improvement of the basis set quality. In fact, 
a somewhat detailed analysis of the linked contributions of Triple and Quadruple 
excitations as estimated at td-2 level (see Table 4) reveals that Linked Triple 
contributions are mainly responsible for this spurious behaviour. 

It is easily seen that adding the linked Quadruples (AEQL) contribution only to 
the (SC)2SDCI correlation energies gives - 199.177261 hartree for F2 at 5.00 a.u. 
and - 199.168362 hartree at 10.00 a.u., so that the energy decreasing at long 
distances does not occur. A similar behaviour is found for HF and with all the basis 
sets. The perturbative-like way of calculating c for triples in Eq. (12) could be 
responsible for this behaviour. In fact, similar behaviours, but significantly more 
divergent, have been reported for CCSD(T) on a RHF reference in F2 [-40]. 

The results of (mv)td are in general similar or slightly better than for CCSD(T) 
in the well region, and easily obtainable and reliable at very long single bond 

Table 4. Contributions to the total energy calculated at some selected distances with the (mean value) 
td-2 model and cc-pVTZ basis set. All data are in a.u. 

Molecule R E scv E (sc)2s°cl AETL A E~ Total energy 
((mv)td-2) 

F2 2 . 7 0  -198.758003 -0.521463 -0.018352 -0.006575 -199.296020 
Fz 5 . 0 0  --198.501833 --0.671113 --0.061162 -0.004315 -199.238423 
F z 10 .00  -198.402833 --0.763416 --0.072541 --0.002113 --199.240903 
HF r~=1.733 --100.058009 --0.271261 -0.006472 --0.002418 --100.338160 
HF 4to -- 99.644654 -- 0.437953 - 0.033952 -- 0.000679 -- 100.115880 
HF 5to --99.620342 --0.461054 --0.036264 -0.000930 --100.116729 
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distances where CC procedures do not converge. We have also shown that adding 
the Linked effects of Triples to the (SC)2SDCI method is sufficient to obtain 
reliable potential curves. 
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